
Lucas Sinclair, PhD
Bioinformatics consultant
www.sinclair.bio

Python course syllabus
November 11, 2016

Page 1 of 9

1 Introduction
This documents contains a semi-detailed syllabus and day by day content for a python course
developed at Sinclair.Bio oriented towards biologists and Big Data in genomics. If your organi-
zation is interested in setting up such a course with us, things can be customized and modified
depending on your needs.

2 Why learn programming?
The last decades have brought many changes to all the domains of science and technology. One
trend that is steadily increasing in importance is the necessity of using large quantities of data
to answer scientific questions. For instance, the field of physics has almost entirely switched
to data-driven research and, indeed, students in physics learn programming very early nowa-
days. An other field that has been heavily affected is that of biology. There, “Big Data” is also
changing the fundamental ways in which science is conducted, the cost of DNA sequencing hav-
ing dropped by five orders of magnitude in the last ten years. Yet, not all scientists are ready or
have been trained for this sweeping change.

Everywhere, enormous amounts of data are now being produced and the computer operators
required to analyze and process them have largely become the bottleneck in many research pro-
grams. Sadly, the computational skills needed are often not included in the standard university
curricula, yet many scientists are now exposed to such big data and spend half or more of their
time behind a keyboard instead of in the laboratory. In this course, we will give the practical
knowledge that a scientist needs to address the common challenges of large-scale data analy-
sis. This course won’t make them professional information technology specialists, but it should
make the participants literate enough to solve a large portion of their problems by teaching them
how to program in a modern, widely-used, efficient and user-friendly language: python. They
will also a learn a bit about programming tools around python that can help them organize and
reuse.

In essence, we see many of our peers that are either stuck at a low level of proficiency and
only venture into Excel for basic problem solving or, in the second case, are a bit more profi-
cient but have been hired as de-facto IT scientists while lacking hard programming skills. After
this course, the participants will become versed in python and they will be able to solve day-to-
day computational problems by themselves. At the same time, the heavier users will be able to
produce more readable, maintainable and shareable code, while automating large parts of their
analysis and becoming leaps and bounds more productive.

Programming courses aimed at the modern scientist that missed this type of training in his
undergraduate path are scarce. Some courses do exist but they tend to be much shorter and de-
vote, in our opinion, too little time to hands-on exercise which are critical to the learning of a
new skill.

3 Why learn Python?
There is a plethora of programming languages that have been developed over the last fifty years
and the variety of choice can seem overwhelming at first. We should maybe start by asking our-
selves: why should we even focus on only one language and not learn all the best ones? Well, the
answer to that is quite simple. Firstly, it takes a significant amount of time investment to learn
the modalities and syntax rules of a programming language, even for the ones that are designed
to be quickly assimilated. Secondly, your productivity will be much greater if you have a deep
mastery of a single multi-purpose programming language when compared to the situation where
you have but a surface knowledge in many different programming languages.

www.sinclair.bio


Lucas Sinclair, PhD
Bioinformatics consultant
www.sinclair.bio

Python course syllabus
November 11, 2016

Page 2 of 9

It is therefore optimal in the context of answering scientific questions to select one particu-
lar language and to become good at it. The language should be modern, widely used (i.e. large
community of support), easy to learn, and must be able solve a wide-range of problems (i.e. not
a domain specific language.).

In addition, when choosing a language, there is a balance to be made between the speed of
execution of the final product in terms of processor-hours and the time it takes to create the fi-
nal product in terms of programmer-hours. Languages that are “close to the machine” such as
Assembly will create programs that can run extremely fast and in an extremely resource effi-
cient manner, however they will take months or years for the programmer to create. Languages
that are “far from the machine” and are abstracted away from the bare metal will run in a slower
fashion but will enable the programmer to create them in minutes or hours. The current situ-
ation in scientific computation is that most of the challenges commonly faced can be resolved
without the need of highly efficient programming. It is thus desirable to choose a high-level or
“scripting” language to promote the best productivity. In other words, letting your script run a
couple hours or days is never a problem and you can work on other things in the mean time.

4 Learning Outcomes
The main goal of the course is to provide sufficient knowledge in the craft of programming to
enable scientists to solve the easy and intermediate computational problems they will be con-
fronted with independently. The course will give them a intermediate practical proficiency in the
python programming language. After the course the participant should be able to:

• Write simple and intermediate programs in python to process, filter, clean, analyze, and
visualize scientific data.

• Ability to automate much of the computational tasks that are used in their day-to-day
work.

• Understand the universally used paradigm of object-oriented programming as it is imple-
mented in python.

• Understand the necessity and advantage of using test-driven development.

• Understand the best practices in python programming, such as the advantages of style
guides.

• Basic proficiency with the revision control solution that is “git” to archive and distribute
the programs or scripts created.

• Acquire experience with understanding and quickly debugging errors within the code.

• Ability to read and understand programs written by one’s pears, to review them or modify
them.

5 Duration and time plan
The course will run over a month and be split into two parts, one basic part and one advanced
part. The second part will be the natural continuation of the first part and will be focused around
the personal project. The participants can inscribe to only the first part, only the second part,
or to both.

The basic part would run over the course of two weeks and contain six half days as shown
in figure 1. A half day would include four hours and a half running from 13h00 to 17h30 with

www.sinclair.bio


Lucas Sinclair, PhD
Bioinformatics consultant
www.sinclair.bio

Python course syllabus
November 11, 2016

Page 3 of 9

three coffee breaks included. Courses would be split evenly between lectures/seminars and exer-
cise/practical sessions.

Week 1 Monday Tuesday Wednesday Thursday Friday
Afternoon Afternoon Afternoon no course no course

Week 2 Monday Tuesday Wednesday Thursday Friday
Afternoon Afternoon Afternoon no course no course

Figure 1: Schedule for basic part

The advanced part would include three half days of lectures and exercises. The rest of time
is devoted to the personal project with the hand-in deadline placed on the last day of the fourth
week as shown in figure 2. A reasonably short deadline avoids that the personal projects become
disproportionately ambitious and take the participants too much time.

Week 3 Monday Tuesday Wednesday Thursday Friday
Afternoon Afternoon Afternoon no course no course

Week 4 Monday Tuesday Wednesday Thursday Friday
no course no course no course no course p. deadline

Figure 2: Schedule for advanced part

6 Daily schedule of basic part
The teaching consists of lectures and computer exercises which are intertwined. Each day, the
session runs over four and a half hours with three coffee breaks included. We want to make sure
that the level of engagement is appropriate and that participants are stimulated and challenged
while still comfortable with what they are learning.

6.1 Day 1
Interactive lecture

• Examples of why programming is absolutely essential for your life as a scientist. From sim-
ple to complex examples. Reproducible science means reproducible programs, some jour-
nals require you to publish code.

• Why did we select python as a language (mention examples with competition). But also
what is python (imperative and not functional, duck-typed, high-level). Why did we choose
version 2.7.x.

• Theory : The fundamentals of a modern computer: processing power in terms of flops, basic
number representation, the effect of the cascading memory speeds from hard drive to L1
cache.

• A brief introduction to bash: a simple interface to interact with your operating system and
file system, and why it should be avoided.

• Theory : The three realms to being a good programmer in any language: data, instructions
and syntax.

www.sinclair.bio


Lucas Sinclair, PhD
Bioinformatics consultant
www.sinclair.bio

Python course syllabus
November 11, 2016

Page 4 of 9

• The two modes we will be using python in: the interactive prompt for live exploring against
files for storing finished code as well as code that we are working on.

• Review of the built-in types: int, float, str, list, tuple, dict, set.

• Review of control flows: if, else, for, while

• Defining functions.

Exercises

• Figure out how long the computer waits in terms of clock cycles when requesting a re-
source (i) form a local 7200rpm and 10ms seek time hard drive (ii) on a server in Califor-
nia.

• Reflect upon the syntax of a programming language: should it be close to English or not ?

• Simple exercise that involves casting different types and avoiding TypeError exceptions.
(just a level above the codeacademy ones).

• Simple exercise that involves using control flows (just a level above the codeacademy ones).

• Exercise that makes use of several functions.

• The participants give us feedback on the course.

6.2 Day 2
Interactive lecture

• Theory : A brief introduction to algorithms: why and when does the order of computation
really matter (simple example when comparing elements to each other = N2, and example
of De Bruijn’s graph).

• Mutable and immutable types. Pass by copy or pass by reference.

• List comprehensions.

• File I/O and text manipulation. What is parsing and serializing. Unicode vs ASCII.

• The built-in modules: os, sys, re, etc.

• Regular expressions.

Exercises

• An exercise showing why code duplication is bad.

• An exercise showing reference passing.

• A few exercises on text manipulation and file I/O. Experiment with encodings.

• An exercise using regex patterns.

www.sinclair.bio


Lucas Sinclair, PhD
Bioinformatics consultant
www.sinclair.bio

Python course syllabus
November 11, 2016

Page 5 of 9

6.3 Day 3
Interactive lecture

• Linear versus structured programming: advantages and techniques.

• Object oriented programming as the dominating paradigm since it took over C’s structs.

• How objects link to data structures (DS). How a problem is often solved by simply identi-
fying the right DS.

• Using python packages: how to download and install most of them.

• Packages studied in more depth:

1. matplotlib

2. statsmodels

3. pandas

Exercises

• Example that uses objects and show basic inheritance and basic composition.

• Example that shows the right selection of data structures.

• Example that combines all the three packages: load a dataset with pandas, run a stat model
on it, then plot a visualization using matplotlib.

6.4 Day 4
Interactive lecture

• Control your code and share it: introducing git and subsequently github.

• From now on, assignments are to be uploaded on github (use the GUI preferably at first).

• Make your own modules that can be imported.

• Introducing PEP8 and coding style guides.

• Comments and docstrings.

Exercises

• Make your account on github and start making simple commits. Use either command line
or GUI.

• Given a TSV file that has a table where columns are identifiers and rows are different sam-
ples. Also given an index where each identifier is associated with a classification. Some
identifiers might belong to the same classification ! Instruction: make a new table linking
all different classes to different samples and save it in CSV-UTF8 format.

• Write a simple parser (e.g. FASTA) that responds to certain requirements and passes cer-
tain given tests.

• Participants comment on each other’s code and try to establish a personal coding style
guide.

www.sinclair.bio


Lucas Sinclair, PhD
Bioinformatics consultant
www.sinclair.bio

Python course syllabus
November 11, 2016

Page 6 of 9

6.5 Day 5
Interactive lecture

• The different licenses you can put on your code: MIT, BSD, GPL, LGPL, Creative Com-
mons.

• Theory : Introduction to the Zen of python and some philosophical remarks.

• How test driven development is the only safe form of development, especially in science
where trust is so important. Shocking example: e.g. blog post in QIIME.

• How python can be used to do functional programming. Iterators and generators.

Exercises

• Example showing the advantage of lazy processing data, such as an iterative dataset that
can’t hold in RAM.

• Write a program that identifies where proteins are hiding in nucleotide sequences (three
difficulty steps: simple visual print out, auto frame detection, multi-protein).

• Given a class structure where methods are left blank, automate the processing of N sam-
ples through a small series of tools.

• Add automated test to past exercises or other objects.

• Second round of evaluation.

6.6 Day 6
Interactive lecture

• Things that the participants said were not clear enough. This lecture can be designed ac-
cording to the feedback and the questions we will have gotten. It is a buffer zone of sorts
and in any case can be just used for a Q&A session.

Questionnaires

• Evaluation of participant’s theoretical knowledge. Questions on the lectures that were
given. Written questionnaire, no computer. One hour.

• Practical knowledge assessment. Exercise like the ones they have been doing in the past
two weeks. Computer and internet available. Two hours.

7 Daily schedule of advanced part
Here, the participants will develop their own project: a specific analysis he/she wants to pro-
gram or automate, a tool she/he wants to create to process some data, or even a research-project
on programming. The participants are free to choose the direction of their project, but it must
be doable in no more than about four days of programming.

www.sinclair.bio


Lucas Sinclair, PhD
Bioinformatics consultant
www.sinclair.bio

Python course syllabus
November 11, 2016

Page 7 of 9

7.7 Day 7
Interactive lecture

• Example of how to turn a function oriented script into an object-oriented script and make
it better, more readable, more maintainable, and more powerful.

• Nice uses for decorators.

• SQLite3 databases or HDF5 storage for different types of data.

• Premature optimization is the root of all evil. But when you do optimize, run a profiler.
Examples of profilers.

• Following the optimization theme: what is garbage collection and how it helps you.

Exercises

• Without googling them, try to come up with one example for each of the points of the “Zen
of Python”.

• Example where the participant must identify the slow parts of a program.

7.8 Day 8
Interactive lecture

• A few examples of the dark magic that python can do and why it should be avoided. In-
trospection such as touching self.__dict__ or even __module__, the few cases where
__new__ is justified, metaclasses, monkey patching. Readability is important, don’t use
black magic.

• Theory : The slightly different pythons: CPython, RPython, PyPy, IronPython, Jython,
StacklessPython, etc

• Theory : The more different pythons: Python 2 and Python 3. What are the usage stats ?
Why should I care ?

• Python and speed, when it can actually be useful to write a loop in C.

• Python and concurrency: why it is awful and a brief mention of the Global Interpreter
Lock.

• Making user-friendly command-line utilities in python.

Exercises

• Deciphering a script with too-much black magic.

• Small exercise with a few command-line parameters.

• Teachers offer help and guide the participants in defining the skeleton of their project.

• Participants discuss their personal project draft with other participants and try to finalize
the blueprint of their course project.

www.sinclair.bio


Lucas Sinclair, PhD
Bioinformatics consultant
www.sinclair.bio

Python course syllabus
November 11, 2016

Page 8 of 9

7.9 Day 9
Interactive lecture

• Making pipeline or workflows in python. Libraries or roll your own.

• Examples of previous projects and pipelines. Good and bad sides of design. Stories form
the past.

• More complete ways of documenting your code. UML diagrams, sphinx autogeneration,
readthedocs.org, github’s issues and wiki.

• Methods for collaborating on code and team management. Concepts such as Agile, Sprints,
Scrum and Extreme.

Exercises

• Each teacher takes on 5 participants and three groups are created.

• Within groups, short 5 minute presentations for each participant on their final project
blueprint.

• The scope and draft of each personal project is validated by the teachers and participants
have until the Friday of the next week to complete them. They may come to us in between
and each one has a certain amount of meeting time they can use live or via Skype.

8 Reading material
No specific book is associated to this course, and the participants will receive different written
materials coming from various sources. However, if the participants want to have such a book to
follow and help them, they can use this free one:

http://openbookproject.net/thinkcs/python/english2e/index.html

If this book is read by the participant, it is our opinion that the chapters after number 17 are
less interesting in the aspect of python programming for the scientist.

www.sinclair.bio
readthedocs.org
http://openbookproject.net/thinkcs/python/english2e/index.html


Lucas Sinclair, PhD
Bioinformatics consultant
www.sinclair.bio

Python course syllabus
November 11, 2016

Page 9 of 9

9 Contacts

9.1 Lucas Sinclair
E-mail : <lucas@sinclair.bio>

Title : PhD

Showcase : https://github.com/xapple

Statement : I have always been interested in programming and started at a relatively young age by
making small video games. This has helped me in my under-graduate training as an engi-
neer in life sciences and enabled me to easily specialize in bioinformatics. As I have joined
a more “classical” wet-lab and field biology department, today, I feel that my programming
skills are one of the most valuable skills I could transfer to my peers. Overall, it’s a subject
I feel very comfortable in and enjoy teaching.

Experience : Veteran python user, taught several python courses already, followed the Academic Teacher
Training course, contributed to the open-source python projects.

www.sinclair.bio
https://github.com/xapple

	Introduction
	Why learn programming?
	Why learn Python?
	Learning Outcomes
	Duration and time plan
	Daily schedule of basic part
	Day 1
	Day 2
	Day 3
	Day 4
	Day 5
	Day 6

	Daily schedule of advanced part
	Day 7
	Day 8
	Day 9

	Reading material
	Contacts
	Lucas Sinclair


