1 Cluster "under_ice"

1.1 General Information

This is the cluster named "under_ice". It contains 39 samples. It corresponds to project code 'under_ice' ('Jämtland lakes under ice')

1.2 Samples

Some summary information the samples is given in table 1 below.

#	Name	Description	Reads lost	Reads left
1	rl1	Ice RL1Am	50.8%	59'838
2	rl2	${\rm Ice}~{\rm RL2Bm}$	48.7%	166'676
3	rl3	${\rm Ice}~{\rm RL3Bm}$	52.2%	64'920
4	rl4	Ice~RL4Am	49.3%	97'820
5	rl5	${\rm Ice}~{\rm RL5Bm}$	50.3%	82'089
6	rl6	${\rm Ice}~{\rm RL6Bm}$	52.2%	30'200
7	rl7	${\rm Ice}~{\rm RL7Bm}$	50.7%	72'002
8	rl8	${\rm Ice}~{\rm RL8Bm}$	50.7%	66'017
9	bt1	Ice BT1Am	49.9%	40'808
10	bt2	${\rm Ice~BT2Am}$	47.8%	87'755
11	bt3	${\rm Ice~BT3Bm}$	48.8%	33'725
12	bt4	Ice BT4Am	49.8%	59'956
13	bt5	${\rm Ice~BT5Am}$	50.4%	44'323
14	bt6	${\rm Ice~BT6Am}$	48.4%	116'957
15	bt7	${\rm Ice~BT7Bm}$	52.8%	75'679
16	bt8	Ice BT8Am	50.8%	80'880
17	lb1	${\rm Ice~LB1Bm}$	49.3%	81'628
18	lb2	${\rm Ice~LB2Am}$	51.0%	65'441
19	lb3	${\rm Ice~LB3Am}$	49.7%	52'826
20	lb4	${\rm Ice~LB4Am}$	50.0%	84'634
21	lb5	${\rm Ice~LB5Am}$	51.1%	56'779
22	lb6	${\rm Ice~LB6Am}$	49.3%	101'548
23	lb7	${\rm Ice~LB7Am}$	49.9%	96'545
24	lb8	${\rm Ice~LB8Am}$	50.7%	73'916
25	kt1	Ice KT1Bm	51.5%	87'763
26	kt2	${\rm Ice}~{\rm KT2Bm}$	49.4%	109'910
27	kt3	${\rm Ice}~{\rm KT3Am}$	53.0%	80'770
28	kt4	${\rm Ice}~{\rm KT4Am}$	49.9%	83'729

#	Name	Description	Reads lost	Reads left
29	kt5	Ice KT5Bm	51.1%	64'818
30	kt6	Ice KT6Bm	54.2%	93'202
31	kt7	${\rm Ice}~{\rm KT7Bm}$	53.0%	67'672
32	kt8	Ice KT8Bm	53.5%	60'165
33	sb1	Ice SB1Bm	50.1%	131'108
34	sb2	${\rm Ice~SB2Am}$	50.9%	130'299
35	sb3	Ice SB3Bm	51.3%	107'981
36	sb4	Ice SB4Bm	52.5%	77'429
37	${ m sb5}$	${\rm Ice~SB5Am}$	50.1%	89'302
38	sb6	${\rm Ice~SB6Am}$	53.6%	106'618
39	sb7	${\rm Ice~SB7Am}$	50.7%	102'588

Table 1. Summary information for all samples.

1.3 Processing

- This report (and all the analysis) was generated using the SIFES project at: http://xapple.github.io/sifes/
- A more detailed peer reviewed article has been published in PLoS ONE describing parts of this method.
- Version 2.0.1 of the pipeline was used.
- This document was generated at 2016-11-11 23:20:30 CET+0100.

1.4 Input data

Summing the reads from all the samples, we have 3'186'316 sequences to work on. Before starting the analysis we can look at the length distribution pattern that these reads form in figure 1.

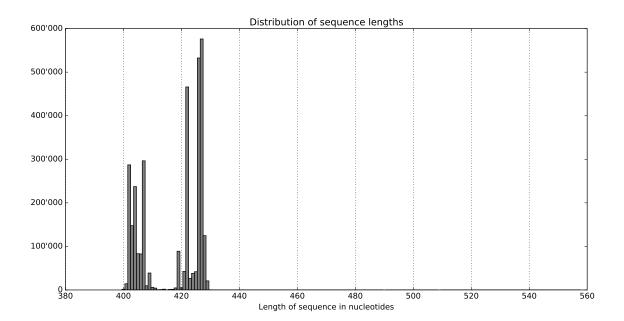


Figure 1. Distribution of sequence lengths at input

1.5 Clustering

Two sequences that diverge by no more than a few nucleotides are probably not produced by ecological diversity. They are most likely produced by errors along the laboratory method and the sequencing. Therefor, we place them together in one unit, called an OTU. On the other hand, a sequence that does not have any such similar-looking brothers is most likely the product of a recombination (chimera) and is discarded. This process is done using the UPARSE denovo picking method (v8.1.1861_i86linux64). The publication is available at:

http://www.nature.com/doifinder/10.1038/nmeth.2604

The similarity threshold chosen is 3.0%. Exactly 8'320 OTUs are produced.

1.6 Classification

Relying on databases of ribosomal genes such as Silva, we can classify each OTU and give it an approximative affiliation. This provides a taxonomic name to each OTU. This is done using the 'Mothur Version 1.37.4' method and the non-redundant, no-gaps Silva version 123 database.

Out of our 8'320 OTUs, some are totally unclassified while others have predictions at different positions in the tree of life. The proportion of classified OTUs is summarized below:

#	Rank	Classified	Unclassified
1	Domain	8316	4

#	Rank	Classified	Unclassified
2	Phylum	7854	466
3	Class	3906	4414
4	\mathbf{Order}	3208	5112
5	Family	2389	5931
6	Genus	1519	6801
7	Species	0	8320

Table 2. Summary information for all samples.

1.7 OTU filtering

At this point we are going to remove some OTUs. All those pertaining to any of the following phyla are discarded: Plastid and Mitochondrion. This leaves us with 8'320 'good' OTUs. As OTUs contain a varying number of sequences in them, we can plot this distribution in figure 2.

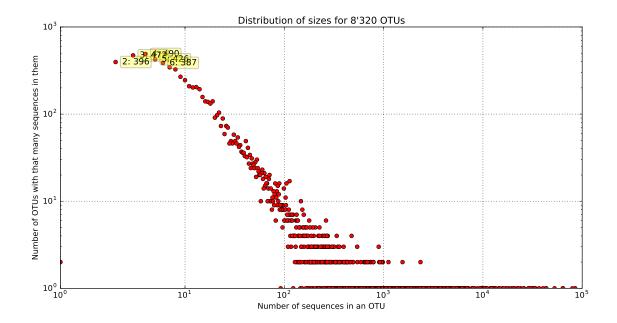


Figure 2. Distribution of OTU sizes

1.8 OTU table

Now we can take our good OTUs and pick them apart, producing a table with OTUs as rows (8'320) and samples as columns (39). Each cell tells us how many sequences are participating in the given OTU originating from the given sample. This table is too big to be viewed directly here. However we can plot some of its properties to better understand how sparse it is as seen in figures 3, 4 and 5:

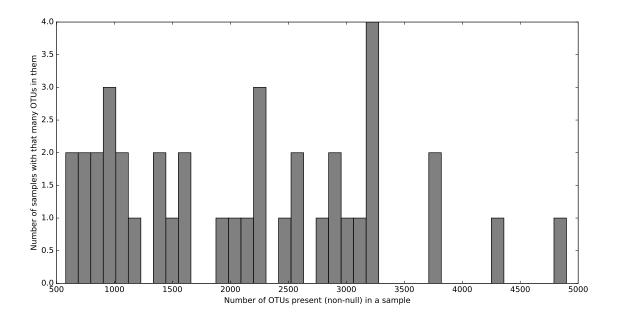


Figure 3. Distribution of OTU presence per OTU

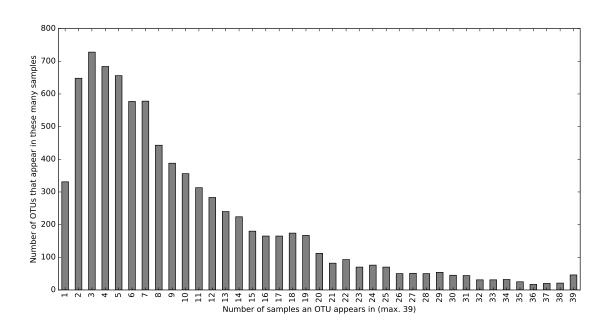


Figure 4. Distribution of OTU presence per sample

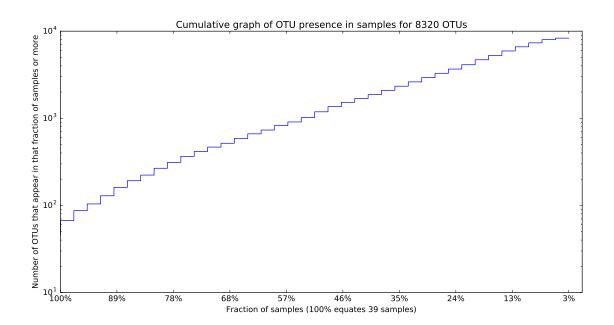


Figure 5. Cumulative number of reads by OTU presence

1.9 Taxa tables

If we modify the rows of our table to become taxonomic names instead of OTUs, some rows will have the same affiliations and will be merged together by summation. This procedure enables us to create taxa tables, which resemble OTU table somewhat. Such names can be made at several levels. It's important to consider the difference between an OTU table and a taxa table.

1.10 Composition

At this point, one of the most obvious graphs to produce is a bar-chart detailing the composition in terms of taxonomy of every one of our samples. Once again, this can be done at several levels or ranks of classification ranging from Domain to Species. At levels that are too deep such visualization become too crowded and unreadable. This of course depends on the complexity of the samples. Here is piloted the 'phylum', 'class' and 'order' taxonomic levels in figures 6, 7 and 8:

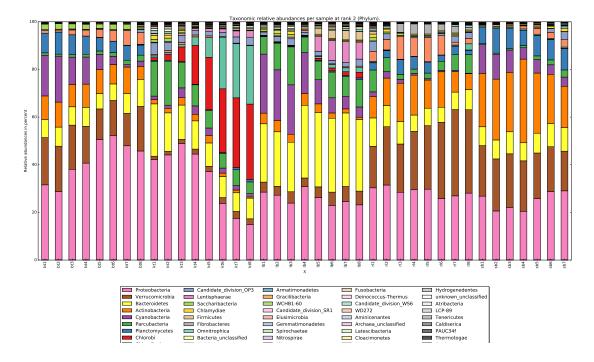


Figure 6. Relative abundances per sample on the phyla level

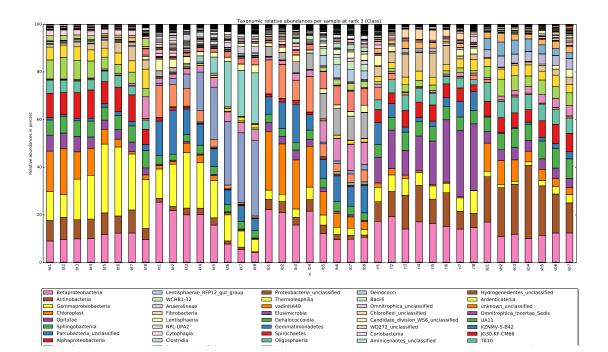


Figure 7. Relative abundances per sample on the class level

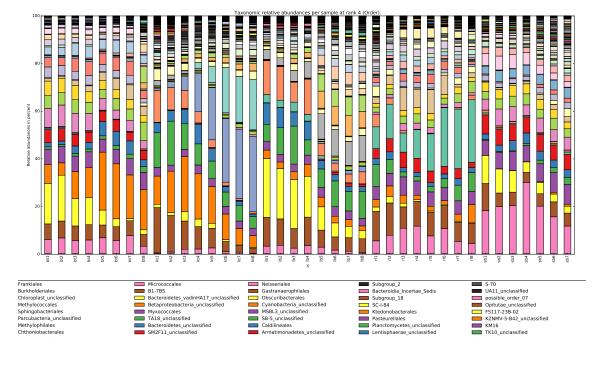


Figure 8. Relative abundances per sample on the order level

1.11 Comparison

We now would like to start comparing samples amongst each other to determine which ones are similar or if any clear groups can be observed. A first means of doing that is by using the information in the OTU table and a distance metric such as the "Horn 1966 (adapted from Morisita 1959)" one to place them on an ordination plot. This can be seen in figure 9.

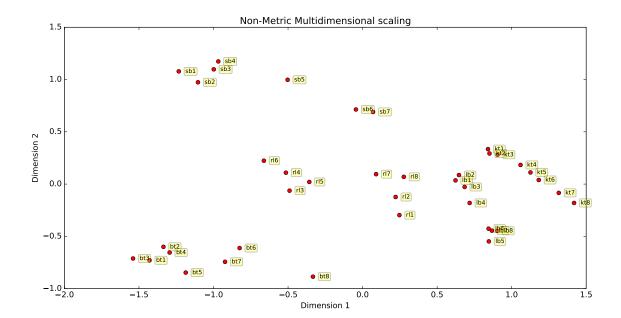


Figure 9. NMDS using the OTU table for 39 samples

These kind of graphs have a random component to them and can be easily influenced by one or two differently looking samples.

1.12 Distances

To compute beta diversity, other distance measures are possible of course. Bray-Curtis and Jaccard distance matrices can be created. We can also explore phylogenetic distance measures such as the UniFrac one. This is also possible and a UniFrac distance matrix can easily be computed. One can also build a hierarchical clustering of the samples from it (not included).

1.13 Alpha diversity

For each individual sample, we can compute several diversity estimators. More details on this procedure are available in each individual sample report. Here, a summary table is provided where the OTU table was downsampled (randomly rarefied) to 20'532 counts so that the different diversity estimates can be compared across samples.

#	Name	Chao1	Ace	Shannon	Simpson
1	rl1	3517.56	3688.83	8.37772	0.984376
2	rl2	3043.32	3498.55	7.12146	0.964135
3	rl3	2009.38	1946.26	6.49987	0.972029
4	rl4	1688.92	1855.26	6.31235	0.967856
5	rl5	2127.13	2041.82	6.04639	0.954659
6	rl6	2166.46	2438.44	5.80504	0.92341
7	rl7	2618.64	2695.95	6.55822	0.929449
8	rl8	2830.67	2804.78	6.6432	0.923175
9	bt1	1033	969.846	6.33921	0.977044
10	bt2	966	892.162	6.21784	0.97287
11	bt3	990.887	999.149	6.37018	0.978073
12	bt4	1085.01	1029.95	6.42862	0.977923
13	bt5	1221.74	1197.41	5.94876	0.950062
14	bt6	1192.38	1210.39	5.98446	0.952448
15	bt7	1183.9	1180	6.1481	0.964091
16	bt8	1667.94	1686.86	6.87542	0.975409
17	lb1	3200.01	3559.63	6.67039	0.964271
18	lb2	3460.33	3763.87	7.08327	0.967405
19	lb3	3664.06	3906.36	7.57044	0.976456
20	lb4	3207.5	3579.14	6.73399	0.970263
21	lb5	2965.22	3397.27	7.35811	0.979748
22	lb6	3255.34	3329.59	7.69068	0.981112
23	lb7	2956.45	2991.22	7.63968	0.982811
24	lb8	3255.5	3330.21	7.86685	0.981324
25	kt1	4448.72	4699.4	8.08775	0.974521
26	kt2	4828.04	4974.8	8.12403	0.972681
27	kt3	4006.23	4412.49	7.37829	0.967947
28	kt4	3149.08	3424.64	6.84278	0.963451
29	kt5	3230.25	3243.76	6.7037	0.952435
30	kt6	2673.77	2817.59	6.15066	0.923691
31	kt7	2681.2	2552.44	6.13152	0.914131
32	kt8	2432.93	2447.7	5.86469	0.902005
33	sb1	962.027	847.673	6.6651	0.982275
34	$\mathbf{sb2}$	753.875	808.453	6.54975	0.98009
35	sb3	885.429	891.788	6.57592	0.979867

#	Name	Chao1	Ace	Shannon	Simpson
36	sb4	929.444	986.14	6.39365	0.97201
37	${ m sb5}$	1354.26	1524.01	6.91616	0.981539
38	sb6	2221.67	2265.03	7.37414	0.98634
39	sb7	2344.13	2293.38	7.73675	0.989413

Table 3. Summary of diversity estimates for all samples.

1.14 Environmental tags

Relying on different kinds of databases and their meta-data, we can try to infer and assign a typical environmental tag to each sequence. This, in turn, enables us to assign a linear combination of environmental tags to each sample and to the cluster as a whole. This method is also available upon request:

https://github.com/xapple/seqenv